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In  this paper, an extension of Miyazaki & Hasimoto's (1984) Green function for the 
slow flow created by a point force of arbitrary direction above an infinite plane wall 
with a circular hole was used to formulate a set of boundary-integral equations for 
the motion, at low Reynolds and Stokes numbers, of a finite rigid sphere in a simple 
shear flow with suction past an infinite wall containing a circular side hole. The 
equations were solved numerically by discretizing the surface of the sphere into a 
finite number of elements and then using a constant-density approximation for the 
unknown surface force distribution and a boundary collocation technique to satisfy 
the no-slip boundary condition a t  the centre of each element. Numerical tests and 
comparisons with available exact and numerical results show that convergence to 
three or four significant figures can be achieved for all the 21 independent unknown 
force and torque coefficients. Numerical values for these coefficients were obtained 
throughout the flow field for spherehole radii ratios of &,, f, $, 3 and 1, and the 
neutrally buoyant velocities and trajectories of individuals spheres were then 
computed for a range of initial upstream positions, and for various values of a suction 
parameter defined in Yan et al. (1991 a )  which refers to the relative strengths of the 
suction and shear flows. I n  turn, these trajectories were used to map out the particle 
capture tube and its upstream cross-section and thereby determine the particle 
screening effect, one of the underlying mechanisms responsible for the well-known 
exit concentration defect observed when particles enter a side pore. The other 
mechanism, the fluid skimming effect due to the presence of a particle-free layer on 
the upstream wall, was considered recently in a companion paper (Yan et al. 1991~) .  
It is shown here that the fluid skimming effect provides a lower bound for this 
concentration defect under the conditions of this analysis. The theoretical predictions 
exhibit features that are qualitatively similar to the experimental observations of the 
hematocrit (red cell) defect in the microcirculation, although the dilute suspension 
limit considered herein is well below the observed hematocrit in the microcirculation 
and the particles are modelled as rigid spheres. 

1. Introduction 
The entrance flow problem for the motion of a sphere in a simple shear flow past 

a small hole with suction in an infinite plane wall has important applications in 

t On leave from Department of Mechanics, Peking University, Beijing, P.R. China 100871. 
$ To whom correspondence should be addressed. 
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fluidization technology, through flow filters and the blood flow in the micro- 
circulation. In the microcirculation, i t  well known from numerous laboratory 
experiments with small glass tubes and in various experiments with microvessels 
(Cokelet 1976; Chien, Usami & Skalak 1984; Gaehtgens & Papenfuss 1979; Lipowsky 
1986; Pries, Ley & Gaehtgens 1986) that the discharge hematocrit H,,  defined as the 
fraction of red cells in blood, can be significantly lower than the feed hematocrit H ,  
in the upstream reservoir of the parent microvessel. Two basic mechanisms are 
believed to be responsible for this hematocrit defect : (i) the plasma skimming effect 
originating from the cell-free layer near the wall, and (ii) the particle screening effect 
caused by the deviation of the cell trajectories from the corresponding fluid 
streamlines due to the hydrodynamic interaction of the particles with the entrance 
geometry of the side branch. Recently, a simplified approximate three-dimensional 
theory was proposed by Yan, Acrivos & Weinbaum (1991 a )  to quantitatively 
analyse the fluid skimming effect a t  low Reynolds numbers for a dilute suspension of 
rigid spheres in a simple shear flow with suction past a side pore in a plane wall. This 
analysis was then generalized by the same authors (Yan, Acrivos & Weinbaum 
1991b) to provide a first evaluation of plasma skimming a t  microvascular 
bifurcations for parent microvessels with an upstream Poiseuille flow. In  the present 
paper the results of a comprehensive and rigorous three-dimensional numerical 
investigation are presented for the hydrodynamic interaction, a t  low Reynolds and 
Stokes numbers, of a finite rigid sphere with a circular orifice when the sphere 
undergoes a general rigid body motion in the presence of a combined shear flow and 
Sampson flow. Twenty one hydrodynamic force and torque coefficients were 
obtained numerically for spheres whose dimensionless radius scaled relative to that 
of the orifice is &, a, $, 2 and 1 respectively. To the best of our knowledge values for 
many of these coefficients are presented here for the first time. These results are then 
utilized to determine the neutrally buoyant particle velocity, the particle capture 
tube cross-section far upstream of the hole and the particle screening effect. Although 
the present analysis is restricted to dilute suspensions which are well below the blood 
hematocrit in the microcirculation in vivo, the theoretical predictions exhibit the 
same qualitative trends as the experimental measurements. 

As already discussed by Yan et al. (1991 a ) ,  since the Reynolds numbers for the flow 
in the capture tube and through the pore are 0 ( & ~ ~ 2 R f ? b )  and O(Q,PRe,), respectively, 
where ,8 is the ratio of the sidepore radius c to the main tube radius b, 2xQ is the non- 
dimensional volumetric fluid flux into the pore scaled with the wall shear rate in the 
main tube and the pore radius c ,  and Re, is the Reynolds number in the feed tube, 
the entrance problem can be considered as a Stokes flow even if Q is greater than O( 1 )  
and the Reynolds number of the main tube flow is greater than unity provided that 
/3 4 1 .  On the other hand, if Re, < 1 ,  as is the case in the microcirculation, no 
restriction on p is required. 

On account of the linearity of the Stokes equations, the motion of a neutrally 
buoyant sphere in the vicinity of a circular orifice due to the action of a Sampson 
flow and the corresponding motion arising from the presence of a shear flow can be 
determined separately and then superimposed. The resulting motion is fully three- 
dimensional without planar symmetry. One can, however, rotate the Cartesian 
coordinate system with its origin at the centre of the orifice so as to position the 
centre of the sphere onto an (x, 2)-plane, so that the incoming shear flow will now be 
inclined relative to this plane. In  turn, this shear flow can be split into two parts, one 
parallel and the other perpendicular to the (x, 2)-plane. These two flow components 
will be referred to henceforth as shear flow 1 and shear flow 2, respectively (cf. 
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FIQURE 1. The various Cartesian coordinate systems. 

figure 1). Consequently, the three-dimensional hydrodynamic interaction problem 
just described can be treated as the superposition of nine simpler flows : (1,2, 3) the 
translation of the sphere in the x-, y- and z-directions in a quiescent fluid; (4,5,6) the 
rotation of the sphere about the x-,y- and z-axes in an otherwise quiescent fluid; (7) 
a Sampson flow past a stationary sphere; (8) shear low 1 past a stationary sphere; 
and (9) shear flow 2 past a stationary sphere. Furthermore, flows 1,3,5,7 and 8 are 
symmetric while flows 2,4,6 and 9 are antisymmetric with respect to the (x, 2)-plane, 
and hence the total number of unknown resistance coefficients that need to be 
determined is reduced by one half. 

Although a variety of solutions for the motion of a sphere in the presence of an 
infinite plane wall a t  low Reynolds number have appeared in the literature (Brenner 
1961 ; O’Neilll964; Goldman, Cox & Brenner 1967a b ) ,  no information was available 
until relatively recently regarding the hydrodynamic resistance of a sphere moving 
in the vicinity of a pore entrance. Consequently, in the absence of the necessary data 
for the hydrodynamic force and torque coefficients, many investigators assumed that 
the particle velocity of a sphere approaching the pore was equal to that of the fluid 
surrounding it. This assumption was used extensively in the past in theoretical 
studies of aerosol filtration and the collection efficiency of nuclepore filters. The first 
studies which examined the pore entrance interaction were for a point force. 
Specifically, Davis, O’Neill &, Brenner (1981) and Davis (1983) derived the 
axisymmetric solution for a point force moving toward a circular orifice along its 
centreline and obtained the force and torque correction factors for a sphere of small 
size, correct to the third order in a ,  the ratio of the sphere radius to that of the orifice. 
This same problem for three-dimensional motion was treated subsequently by 
Miyazaki & Hasimoto (1984) who constructed the closed form solution for a point 
force located anywhere along the (x, 2)-plane and moving in an arbitrary direction 
above an infinite thin plane wall with a circular hole and then used it to determine 
the force and torque acting on a small sphere to first order in a. On the other hand, 
Dagan, Weinbaum & Pfeffer (1982) were the first to examine the axisymmetric orifice 
interaction problem for a sphere of finite size. These authors constructed different 
series solutions of the Fourier-Bessel type for each half-space and matched the 
solutions for the velocity and stress in the plane of the orifice by solving a pair of 
integral equations. Their solution, however, precludes the case where the sphere 
partially enters the orifice. The solution for a finite sphere in a Sampson orifice flow 
was then extended by Yan et al. (1987) to the corresponding three-dimensional 
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motion in which the sphere centre is located in a plane containing the orifice 
centreline. The latter authors introduced a combined multipole-series representation 
and integral-equation method for satisfying the no-slip conditions on the sidewall of 
the orifice with a boundary collocation technique applied on the surface of the 
sphere. Owing to the excessive computational time required, however, these authors 
evaluated numerically the twelve hydrodynamic force and torque coefficients only 
for a = 4. Recently, Gavze (1990) employed a boundary-integral-equation method 
that utilized Blake’s (1971) solution for the Green’s function for a point force moving 
near an infinite plane wall. By constructing two different solutions for the upper and 
lower half-spaces and requiring that the velocity and the stress force be continuous, 
Gavze computed some limited numerical results for spheres and ellipsoids in a 
Sampson flow. As was the case with the method by Dagan et al. (1982), Gavze’s 
technique has the disadvantage that the sphere cannot intersect the plane of the 
hole. 

In  two earlier studies, the hydrodynamic force and torque coefficients described 
above for a finite sphere in a Sampson flow were used to  examine the deviation of the 
particle trajectories from the corresponding fluid streamlines as a spherical particle 
approaches a pore entrance. I n  Yan, Weinbaum & Pfeffer (1986), an approximate 
three-dimensional theory was developed for describing the fine structure of osmosis 
at the entrance to a circular membrane pore where the hydrodynamic interaction 
produces a three-dimensional standing concentration gradient a t  the pore entrance. 
The second application examined the impaction of spherical particles a t  the entrance 
to  a pore a t  both zero and non-zero Stokes numbers, defined as the ratio of particle 
inertia to viscous forces (Dagan, Weinbaum & Pfeffer 1983 ; Wang et al. 1986), as well 
as the collection efficiency of nuclepore filters (Kao et al. 1988). Although, in both 
applications, the particle trajectories will in general deviate from the fluid streamlines 
on account of both their inertia and their interaction with the pore entrance, all the 
particles will eventually enter the pore, if forces of molecular origin are neglected. On 
the other hand, the present application for fluid and particle flow into a side branch 
from a shear layer differs fundamentally from the zero-Stokes-number solutions 
referred to above in that, now, there exist distinct particle and fluid capture tubes. 
These, in general, will not coincide far upstream, the deviation depending on the 
particle size and on the ratio of the magnitude of the side flux to the strength of the 
shear flow. 

To determine the particle trajectories that form the boundaries of the particle 
capture tube, several new problems are considered herein for the first time. These 
include the hydrodynamic resistance of a sphere translating in the y-direction or 
rotating about the x- and z-axes, and shear flows 1 and 2 past a stationary sphere. 
Previous numerical results in Yan et al. (1987) and Gavze (1990) were only for a 
sphere having a radius one half that of the orifice, and none were for the case in which 
the sphere intersects the orifice plane and its centre is located off the pore axis. 
Finally, the conflicting results for several of the resistance coefficients given by Yan 
et al. (1987) and by Gavze (1990) needed to  be resolved. 

In  the present study we shall apply the boundary-integral-equation method of 
Youngren & Acrivos (1975) using an extension of the Green’s function developed by 
Miyazaki & Hasimoto ( 1  984) for a point force moving either parallel or perpendicular 
to  an infinite wall with a hole. The disturbance flow produced by the sphere and the 
plane wall with a hole is then expressed as a surface integral of a single-layer 
potential multiplied by an unknown density function which represents the stress 
force on the boundary surface. This method can also be applied to the case where the 
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sphere intersects the orifice opening. Although, in general, the expression for the 
disturbance flow also contains a double-layer potential, the contribution of the latter 
to the disturbance flow vanishes identically for rigid particle motion. The 
mathematical formulation of the problem and the boundary-integral-equation 
technique will be presented in $2, while, in $3, the convergence characteristics of the 
method will be examined as it applies to the calculation of the various resistance 
coefficients. It will be shown that convergence to three or four significant figures can 
be achieved for all the resistance coefficients, using a maximum of 11 x 11 elements 
on a half-sphere surface for zo/a 2 1.1, with zo denoting the distance of the centre of 
the sphere from the plane, except for the extreme cases where the sphere is quite close 
to the rim of the hole, where 12 x 12 elements are required to achieve convergence to 
three digits. The numerical results are compared with : (i) the exact solutions in the 
limiting case of a vanishing hole; (ii) the numerical solution of the axisymmetric 
motion of the sphere along the orifice centre line; (iii) the approximate solutions for 
a sphere of small size; (iv) the results of Yan et al. (1987) and Gavze (1990) for a = a. 
Results will be presented for all twenty-one independent resistance coefficients for 

As described in $4, these force and torque coefficients were then used to calculate, 
for zero Stokes numbers, the velocity of a neutrally buoyant sphere at any point in 
the flow field, and thereby the sphere trajectories, the particle capture tube shapes 
and finally the particle screening effect that occurs at  the entrance to the pore. The 
motion of those particles which impact the pore edge was also examined and, as will 
be shown, there exists a critical curve which separates the trajectories of those 
spheres which roll into the hole and those which are deflected downstream by the 
surrounding fluid. The shape of this curve depends on Q and on a. Some concluding 
remarks and a brief discussion of the qualitative features of these results as related 
to the discharge hematocrit defect are given in $5.  

a = L  1 1  3 10, 4, 2, 4 and 1. 

2. Formulation 
Consider the arbitrary motion of a sphere in the presence of an infinite plane wall 

with a circular hole of unit radius, and under the action of an external flow consisting 
of a superposition of a Sampson flow and a simple shear flow. This simplified flow 
geometry also constitutes a reasonable approximation of a channel flow with a finite- 
length pore or of a flow in a tube with a side pore where the radius of the parent tube 
is large enough for its curvature to be neglected. We require that /3 -4 1 or Re, 4 1, 
as mentioned in the introduction, so that the Stokes flow approximation will be 
valid. Furthermore, it is shown in Yan et al. (1991a), that the streamline pattern 
using Sampson’s solution for the suction flow components provides a very good 
approximation to Tutty’s (1988) finite-difference solution for pores of finite length. 
Cartesian coordinates (d,y’,z’) are introduced with the origin at the centre of the 
pore opening and the 2’-axis pointing upwards along the pore axis (figure 1 ) .  The flow 
far from the pore opening is described by the superposition of a Sampson flow and 
a simple shear flow along the wall in the 2’-direction. 

Suppose next that the sphere centre is located at any position (xi, yh, 2;).  In  this 
coordinate system the flow is fully three-dimensional without any symmetry. But, by 
rotating the Cartesian coordinates about the 2‘-axis and transforming them into a 
new coordinate system (x,y,z), we are able to place the centre of the sphere on the 
(x, 2)-plane with coordinates (x,,, 0, zo).  This coordinate transformation is given by 

x = x’coscr.+y’sina, (2.1) 
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2 i Q  
FIUURE 2. Flow geometry for the sphere entrance problem considered in this study. 

y = -x’sina+y’cosa, (2.2) 
z = z’, (2.3) 

where a = tan-’(y;/x;) is the angle between the XI- and x-axes. The shear flow is now 
split into two components : one parallel and one perpendicular to the (2, 2)-plane which 
we shall refer to as shear flow 1 and shear flow 2 in that order. In the rotated x, y, z 
coordinate system the various flows will have planar symmetry or antisymmetry 
with respect to the (x, 2)-plane, as noted previously. For mathematical convenience, 
cylindrical coordinates ( p ,  q5, z )  associated with the centre at  the orifice opening are 
used. In addition, it is also convenient to introduce Cartesian coordinates ( X ,  Y ,  a), 
parallel to the rotated coordinates (5, y, z ) ,  and spherical coordinates ( r ,  8, @) fixed at 
the sphere centre (see figure 2). The relationships between the different coordinate 
systems are 

X = rsinBcos@, Y = rsinOsin@, Z =rcost?, 

and 

x = x + x o ,  y = Y ,  z=z+z, 
p = (x2+ y~);, $ = tan-1 (y/x). 

In general the sphere has a translational velocity vector U, = (Ul ,  U,, U,) and an 
angular vector L4 = (wl, w2, w 3 )  whose components are along the (X, Y ,  2) coordinates. 

We next define the disturbance velocity and pressure fields by 

V=FCBI V,-U,, p=pl-p,. (2.7) 

where V1 and p ,  are the actual fluid velocity and pressure while U, and p ,  refer to 
the velocity and pressure of the undisturbed flow in the absence of the sphere. The 
latter consists of a superposition of a Sampson flow and shear flows 1, 2 defined 
above. Therefore 

U, = 6 VS+GVShlcosa-GVShpsina, (2.8) 
p, = 5 pa + GpShl cos a - Gps”e sin a, (2.9) 
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where the superscripts s, shl, sh,, represent respectively the Sampson flow Oand shear 
flows 1 and 2, and G is the gradient of the shear flow at infinity. In addition, 5 is the 
fluid velocity of the Sampson flow in the plane of the pore at its centre: 

J2 = - 3 q / ( 2 x ) ,  (2.10) 

Q = AP/(3P), 

where q is the volumetric fluid flux into the hole. Note that, for a hole of unit radius, 
(Happel & Brenner 1974) 

where Ap is the impressed pressure drop experienced by the fluid flowing through the 
aperture and ,u is the fluid viscosity. The components of the Sampson velocity v9 and 
pressure field pa,  normalized with Q are (Happel & Brenner 1973) 

(2.11) 
Ya 1 

where A, g are oblate spheroidal coordinates defined by 

z = AS, p = ( P + l ) i ( l - P ) J  (0 < g <  1, -Go < A Goo). (2.12) 

The exact solution for the shear flow past a plane wall with a circular orifice was 
obtained by Hasimoto (1981) and, independently, by Smith (1987) and by Davis 
(1991) and the corresponding expressions for the velocity and pressure fields for shear 
flows 1 and 2 are given by (Davis 1991) 

where k = {  1, 
for z 20 

0, for z < 0.  
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The governing equations for disturbance flow due to the sphere are then 

pvv= v p ,  v .  v =  0, (2.15) 

with boundary conditions on the sphere surface, the plane wall and at infinity, in 
that order, 

v = UO(X) +a x I ( X )  - U&), (2.16) 

v =  0, (2.17) 

v = o ,  p = o ,  (2.18) 

where I is the position vector (xl, x 2 ,  x 3 )  or (X, Y ,  2) with origin at the sphere centre. 
In what follows, we shall solve the boundary-value problem posed by (2.15)-(2.18) 

by means of the boundary-integral method, first proposed by Youngren & Acrivos 
(1975) for unbounded flows. But, instead of using the free space singularity or 
Stokeslet of Blake's (1971) solution, as was done by Gavze (1990), we shall apply the 
Green function developed by Miyazaki & Hasimoto (1984) for a point force moving 
in an arbitrary direction near a plane wall with a circular orifice. But, since the 
singularity derived by Miyazaki & Hasimoto is for the special case where the 
Stokeslet is located at the point (yl, 0, y3) or (2, 0, z ) ,  we first need to generalize their 
formulae to the general case where the Stokeslet moves in the j-direction and is 
located at an arbitrary point (yl, y2, y3) or (x, y, 2). Henceforth, these two notations 
will be used interchangeably. After some manipulations, the velocity and pressure at  
the field point (x1,x2,x3) induced by this Stokeslet are found to be 

(2.19) 

where 

(2.20) 

(2.21 a, b )  
aw aw 

@ - z - - ( x , - y , ) z ,  O,(L) = X,VL-LX,. 
I- ax, 

L = i (W-W*) ,  H = i (W+W*) ,  (2.21c, d )  



+ V @ , ,  @c =-+-tan-’- M,  z 2 /2Mc O, (F)  = pVF-Fp,,  
J!P 4 2  M 2 ’  

9 = &f( 72) + 72f( 7z), p* = 7Zf( 7 2 )  + 7: 72f( 72), 
f(2) = 1 / ( 1 - ~ ~ Z ) ,  7 = tanha(, 70 = tanhito, 

2 = ei($-$o), = e-i($-$a), = T o e +  1,  IJT* = ly* +To,  

M ,  = Msin &,I), M ,  = Mcos ( a ~ ) ,  
+o = -xx,sin$+x,cos$, po = x,cos$+x,sin$, 

Here E,7, $ are toroidal coordinates related to p,  z, $ by 

(2 .2251)  

(2 .22m, n)  

( 2 . 2 2 9 )  

(2.22v, w) 

(2 .22x,  Y) 

(2.22 r-u) 

and Eo, r , ~ ~ ,  $o are the toroidal coordinates of the Stokeslet. The expressions for fl in 
(2 .20)  will not be quoted here, because the pressure formulae will not be needed in the 
present study. 

It is well known and easily verified that, for a rigid-body motion, the velocity field 
can be expressed solely in terms of a single-layer potential with the surface stress 
force f k ( y )  as its density no matter what the form of the undisturbed velocity U,(x) 
as long as the latter satisfies the Stokes equations and has no singularities within the 
space enclosed by S,, the surface of the particle. Thus, thus we have 

(2 .23)  

where G f ( x , y )  is the Green’s function due to a Stokeslet in the k-direction at  point 
y given by (2 .19)  and (2 .21) ,  (2 .22) .  The solution given by (2 .23)  satisfies the 
governing equation (2 .15) ,  the no-slip boundary conditions on the infinite sidewall of 
the hole and tends to zero at  infinity. All that remains is to satisfy the no-slip 
boundary conditions on the surface of the sphere. This will eventually lead to a 
system of linear integral equations to be solved for the unknown density function f k .  
Since the complexity of the Green’s function appearing in (2 .23)  precludes an 
analytic solution, the system of equations will be solved numerically. 

To this end, following the approach presented in Youngren & Acrivos (1975), the 
sphere surface is discretized into N elements d,(m = 1 ,  ...,N) and the unknown 
density function fk within each element is approximated by a constant equal to the 
value off, at the centre of that element. Therefore, the number of unknownsfk(xm) 
is 3N. Applying the boundary collocation technique, one then satisfies the no-slip 
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boundary conditions at the centre of each boundary element. The integral equation 
(2.23) is thus reduced to a system of 3N linear algebraic equations 

with 

(2.24) 

(2.25) 

Up(x”)  = U,(x”)+Bx r(x”) -  U,(x”),  (2.26) 

which can be solved by any matrix inversion technique. Finally, the expressions for 
the total force F, and torque q exerted by the fluid on the sphere become, 
respectively, 

(2.27) 

(2.28) 

By virtue of the linearity of the Stokes equation (2.15) and the corresponding 
boundary conditions (2.16)-(2.18), the general motion of a sphere in the vicinity of 
the orifice can then be decomposed into symmetric and antisymmetric components 
with respect to the (2, 2)-plane. The symmetric component consists of five simpler 
flows : two pure translations with velocities (1,0,0) and (0, 0 , l )  respectively, a pure 
rotation with angular velocity (0,1,0) in an otherwise quiescent fluid, a Sampson 
flow with = 1 past a stationary sphere, and shear flow 1 with G cos a = 1 also past 
a stationary sphere. On the other hand, the antisymmetric component includes four 
simpler flows : a pure translation with velocity (0,1,0) in an otherwise quiescent fluid, 
two corresponding pure rotations with angular velocities (1,0,0) and ( O , O ,  l), 
respectively, and shear flow 2 with Gsina = 1 past a stationary sphere. These two 
flow problems are decoupled and, therefore, can be treated separately. 

The hydrodynamic forces and torques on the sphere, which are related to the 
dimensionless resistance coefficients, the sphere velocity and the reference velocity of 
the Sampson flow and that of the shear flow can then be written as 

F, = 6n,ua( U, Pll + U3 F? + aw, F p  + c Fy + Gz, F;”1 cos a) ,  

F3 = 6 n p (  U, Pi + U 3 P ~  + aw, FP + c F i  + Gz, Fihl cos a) ,  

T, = 8 n p 2 (  U, T!! + U, T!! + aw, Q + 
(2.29) 

(2.20) 

I 
1- 

Ts, + iGachl  cos a) ; 

F, = 6n,ua( U, Fk + awl F? + aw3 F’,s - Gz, Fiho sin a), 

= 8 n p 2 (  U, +awl T? + aw3 T p  -iGaTs,”a sin a) ,  
= 8n,ua2(U,T!!+aol T’jl+aw3T:3-iGaTih¶sina), 

where F?, . . . , chi are the twenty-seven dimensionless resistance coefficients related 
to the nine independent flows described above. The superscripts t,, t,, r,, s, 
shl, t,, rI, r3, sh, represent these nine flows in sequence. In  fact, only twenty-one of 
these coefficients are independent, because, on account of the Lorentz reciprocal 
theorem (Happel & Brenner 1973), twelve of the coefficients are related as follows: 

(2.31) 
a, F?=- FP = Fk ,  FF = 4 p  ‘Zq 

li’2 = 4pl~, F‘,s = 4 p  3 2, Q=Q.j  
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These relationships will also be used as one of the criteria to check the convergence 
and accuracy of the numerical method. 

The corresponding linear algebraic equations for the nine basic flows, each having 
the same left-hand side, are constructed by replacing the right-hand side of (2.24) by 
( l , O , O ) ,  ( O , O ,  l), (O,-acos9, asin@sin@), - VS, -Phi, for the symmetric, and 
( O , l , O ) ,  (acos@,O,-asin@cos@), (-asinOsin@, asin@cos@,O) and - V B h p  for the 
antisymmetric cases respectively. These equations, when solved, yield the above 
twenty-seven resistance coefficients. 

In  fact, the force and torque exerted on a stationary sphere by the incoming 
Sampson flow and by the two shear flows may be calculated directly using the 
density functions generated from the six independent translations and rotations of 
the rigid sphere without invoking the solution of the linear algebraic equations 
(2.24). For example, for the Sampson flow s and the translational motion t,, the 
reciprocal theorem states that 

Jsp VtlqIIs.dS = Jsp VS.Wl.dS, 

where II is the corresponding stress tensor. Therefore, in view of (2.29), we have that 

wherefi is already known from the solution of the t, problem. Similar expressions 
can be written for Ft,TB,,F;hl,FSZha etc. in (2.29) and (2.30). Of course, all of the 
dimensionless resistance coefficients are functions of the sphere radius as well as of 
the position of the sphere centre. 

As noted above, in the Cartesian coordinate system (x,y,z), and with the sphere 
centre on the (x,z)-plane, the basic flows are either symmetric or antisymmetric 
about the (x,z)-plane. Then, if P(x,  y, z )  and I"@, -y, z) are a pair of symmetric points 
about the (x,z)-plane, we have that 

f,(P) =j,(I"), f z (P)  =fz(P'), f J P )  = -j#') for the symmetric case 

f,(P) = -f,(F), f z (P)  = - f z (P' ) ,  f J P )  =fu(P') for the antisymmetric case 

In either case, one needs to evaluate the unknown density functions only over one- 
half the sphere surface. But since the computation time is approximately 
proportional to the square of the number of elements, this simplification greatly 
reduces the memory requirements and the CPU time. 

For a sphere, a natural way of proceeding is to divide the surface of a half-sphere 
at y 2 0 by choosing N x N elements with N equal intervals in both the 9- and 4- 
directions, and to employ a simple 4 x 4 composite Gaussian quadrature based on a 
one-dimensional corresponding formula to evaluate the two-dimensional integral 
(2.25). The error will decrease with increasing values ofN. The numerical evaluation 
of the surface integrals encounters no difficulty when the integrand is regular, but if 
the element contains the point xm, the integral becomes singular at d = xm. A 
procedure similar to that proposed by Youngren & Acrivos (1975) was therefore 
adopted. Specifically, the element was divided into two regions : one with a small area 
A, around xm and the other being the remainder. Then, by approximating the surface 
of A, by the tangent plane a t  xm with the small area replaced by a square of sides 2~ 
and transforming the coordinate system to a local polar one, we were able to evaluate 
the improper integrals analytically, even though the flow geometry was much more 
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complicated than in Youngren & Acrivos (1975). The details are given in the 
Appendix. The integration to be performed over the remaining surface is regular and 
was accomplished using 8 x 8 composite Gaussian formulae to achieve the required 
accuracy. 

Our numerical experiments showed that for most values of z,/a and for most of the 
resistance coefficients, the results are insensitive to the choice of E in the range 
0.011 < €1 < 0.31, where 1 is the smaller side length of the rectangle A ,  formed by the 
N x N  elements. However, for some coefficients, for example, F$ and Pt, the 
integration was found to be sensitive to E ,  when the sphere was located near the plane 
wall. Numerical experience indicates, however, that, for each z,/a in the range 
1.1 < zo/a < 2 there exists an optimum value of E in the sense that this choice of E 

gives the best agreement with the known expressions for these coefficients far from 
the hole. Using this optimum value, the convergence process can be markedly 
accelerated. The optimum values of E thus found are given in the Appendix. 

The linear system of algebraic equations was solved by standard Gaussian 
elimination techniques. Since a considerable part of the computer time is spent in 
inverting the matrix Aik, it is worthwhile to note that this matrix depends only on 
the particle geometry and is independent of both the form of the incoming flow 
velocity and of the particle motion. Thus, only a single matrix inversion is required 
for all the nine basic flows associated with the general motion of the sphere. 

3. Numerical results 
3.1. Convergence and accuracy 

We first discuss the convergence and accuracy of the numerical method. For a = 1, 
x -1 - 
convergence to three or four significant digits was achieved for all coefficients using 
a maximum of 10 x 10 elements on the surface of the half-sphere. The six reciprocal 
identities (2.30) were also satisfied with a maximum relative error of less than 0.05%. 
To further test the convergence of the method, the strongest interaction position 
xo = 1.0, z,/a = 1.1 (a = 1) was selected, but even for this difficult case, two- or three- 
digit convergence was attained using a maximum of 12 x 12 elements. A similar 
degree of convergence was obtained for the reciprocal relations (2.31). On the other 
hand, when zo/a 2 4, only 8 x 8 elements were required to achieve three- or four-digit 
convergence. 

Numerical tests of the solution accuracy were conducted for those cases where 
exact solutions or other numerical solutions were available for comparison. For 
example, as x,+03, the present problem becomes identical to that of a translating 
and rotating sphere in the presence of a simple shear flow above an infinite wall plane. 
Hence, our solutions at  a = t ,  xo = 10 were compared with the corresponding exact 
solutions given in Goldman et aZ.(1967a, b) .  Again, the two sets of coefficients were 
found to be identical to a t  least three-digits. 

Many authors have considered two axisymmetric cases : a sphere moving along the 
orifice centreline in a quiescent fluid and a Sampson flow past a stationary sphere 
with its centre on the orifice axis. I n  tables 1 and 2 our values for the corresponding 
resistance coefficients F$ and F i  are compared with those given by Yan et al. (1987), 
Davis (1983), Dagan et al. (1982) and Gavze (1990). Clearly, there is close agreement 
between all these results except for Davis' solution for a small sphere, which, as 
expected, deteriorates for a 2 1. The present results agree especially well with 
Gavze's values for F"2 and with Davis' results when a < 4. 

and zo/a = $, which is representative of a moderate sphereorifice interaction, 
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1 zola a = L  10 z 1 5 

(i) -1.055 -1.488 -1.884 -2.124 
(ii) -1.054 -1.426 -1.865 -2.119 

2.0 (iii) -1.054 -1.484 -1.840 -1.998 
(iv) -1.051 -1.392 -1.806 -2.120 

(i) -1.053 -1.494 -2.184 -3.168 
(ii) -1.052 -1.421 -2.104 -3.153 

(iv) -1.050 -1.388 -2.033 -3.154 

(i) -1.052 -1.469 -2.499 -8.17 
(ii) -1.051 -1.395 -2.360 -8.47 

(iv) -1.050 -1.377 -2.287 -8.94 
1.1 (iii) -1.052 -1.459 -2.266 -2.84 

(v)  -1.055 -1.487 -1.871 -2.095 I 
1 

(iii) -1.053 -1.487 -2.086 -2.506 

(v) -1.055 -1.494 -2.172 -3.106 

(v) -1.056 -1.472 -2.489 -8.39 

(1990) 
(i) present work, (ii) Yan et al. (1987), (iii) Davis (1983), (iv) Dagan et al. (1982), (v) Gavze 

TABLE 1. A sphere translating along the orifice centreline in a quiescent fluid (comparison of 
the resistance coefficients for Fts) 

1 z0la a = L  10 Y 1 

(i) 1.007 0.685 0.361 
(ii) 1.007 0.652 0.359 

2*o (iii) 1.007 0.701 0.458 
(iv) 1.004 0.627 0.328 

(i) 1.023 0.843 0.579 
(ii) 1.022 0.798 0.568 

(iii) 1.023 0.820 0.824 1.5 [ 
(iv) 1.021 0.776 0.483 

(i) 1.033 0.961 0.768 
(ii) 1.033 0.912 0.753 

(iii) 1.032 0.885 1.068 
(iv) 1.031 0.906 0.640 

1 
1.1 [ 

(i) present work, (ii) Yan et al. (1987), (iii) Davis (1983), (iv) Dagan et al. (1982) 

TABLE 2. Sampson flow past a stationary sphere with its centre on the orifice axis (comparison 
of the resistance coefficients for F;)  

1 1 3 zola a = &  T Y z 1 

-1.052 -1.156 -1.459 -1.946 -2.587 
''O {(g; -1.051 -1.142 -1.386 -1.944 -2.457 

0'5 {(il -1.050 -1.133 -1.336 -1.916 -3.332 
-1.051 -1.145 -1.398 -1.918 -3.26 

-1.051 -1.140 -1.364 -1.858 - {(!i{ -1.050 -1.129 -1.310 -1.777 - 

(i) present work, (ii) Yan et al. (1987) 

TABLE 3. Comparison of the resistance coefficients for F2 when 0 < zo/a < 1.1, x,, = yo = 0 
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%,/a xo = 0 0.25 0.50 0.75 1 .oo 1.25 1.50 2.00 

1.052 1.056 
''lo {(!! 1.049 1.052 

1.052 1.056 
1*25 ((!; 1.049 1.053 

1.053 1.057 
1'50 ((!I 1.050 1.054 

1.055 1.059 
2'oo {(!! 1.051 1.055 
4.00 (({!) 1.063 1.069 

11) 1.059 1.064 
1.074 1.076 

lo'oo {(!I 1.068 1.070 

1.073 
1.067 
1.074 
1.067 
1.075 
1.069 
1.079 
1.072 
1.091 
1.083 
1.084 
1.077 

1.147 5.62 11.37 11.42 
1.123 2.022 2.023 2.023 
1.151 3.203 5.292 5.302 
1.126 1.900 1.900 1.900 
1.156 2.263 3.192 3.203 
1.130 1.749 1.750 1.750 
1.163 2.116 2.127 2.127 
1.136 1.559 1.662 1.562 
1.155 1.364 1.379 1.379 
1.133 1.272 1.280 1.280 
1.095 1.117 1.122 1.122 
1.087 1.105 1.109 1.109 

11.44 
2.023 
5.304 
1.900 
3.205 
1.750 
2.127 
1.563 
1.381 
1.281 
1.126 
1.112 

(i) present work, (ii) Miyazaki & Hasimoto (1984) 

TABLE 4. The case of a small sphere (comparison of the resistance coefficients for -F$ when 
yo = 0, a = &j 

As mentioned in the introduction, the technique employed by Dagan et al. (1982) 
and by Gavze (1990) fails where the sphere intersects the plane of the orifice, a case 
which is important in treating pore entrance phenomena such as the particle 
screening effect. In contrast, our solution method, as well as the technique proposed 
by Yan et al. (1987), can treat this case without difficulty. In table 3 typical results 
for F!! are compared with those given by Yan et al. (1987) for 0 < %,,/a < 1.0 along 
the axis of the orifice. It is seen that there is reasonable agreement between the two 
sets for all values of a. Similar agreement was obtained for Fi.  

Using their point force solution, Miyazaki & Hasimoto (1984) derived the 
expressions for several resistance coefficients, correct to first order in the sphere 
radius a. It should be noted, though, that their formula for the z-component of the 
force, when the point force moves in the x-direction, is in error (Miyazaki & 
Hasimoto, 1984, p. 211, eq. (4.9). The correct expression for this force component is 

-4 +4 cos 7)  +M2 10- 10 cos 7 + 8 COS' 7 + C O S ~  7 
16n 

1 
M2 

+4 cos3 7 +2 c0s4 7 +- (10- 9 cos 7 - 10 C O S ~  7+ 8 c0s3 7+ c0s5 7) 

1 +4 1 -  cosr 
(M6 +M4 cos 7 +M2 sin2 7 + cos 17 sin2 7) 

coshE+ 1 

Because of space limitations we shall compare our results for F!! with those obtained 
by Miyazaki & Hasimoto (1984) only for a = &. As seen in table 4, the agreement 
is good only over the hole. 

Our computed values for F2,  F? and FP for the planar symmetric case, in which 
the sphere with its centre lying in a plane that contains the pore centreline translates 
in the z-direction and rotates about the y-axis in a quiescent fluid, are compared in 
tables 5, 6 and 7 with the corresponding results in Yan et al. (1987) and in Gavze 
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ZO/. xo = 0 0.50 0.75 1.00 2.00 

1.125 1.125 1.125 1.126 1.126 
10 ' (!il 1.123 1.123 1.123 1.123 1.123 1 (iii) 1.125 1.100 1.100 1.100 1.100 

1.327 1.334 1.341 1.350 1.374 
4 ' (!I 1.322 1.329 1.336 1.344 1.367 

(i) 1.488 1.585 1.707 1.855 2.116 
(ii) 1.487 1.585 1.705 1.848 2.089 

(i) 1.494 1.676 1.977 2.440 3.191 
1.5 ' (ii) 1.494 1.682 1.985 2.449 3.125 

(i) 1.469 1.750 2.530 5.99 11.38 
1.1 { (ii) 1.472 1.766 2.606 6.226 10.92 

(i) present work, (ii) Gavze (1990), (iii) Yan et al. (1987) 

TABLE 5. The three-dimensional case when the sphere centre is located in the plane containing the 
hole centre (comparison of the resistance coefficients for -F$, a = t )  

\(iii) 1.300 1.300 1.300 1.300 - 

\(iii) 1.421 1.5 1.7 2.0 

(iii) 1.426 1.450 1.550 1.650 - 

- 

- - (iii) 1.395 1.6 1.9 

zola xo = 0 

0 
2 I (1;; 0 1 (iii) 0 

1.5 ' (ii) 0 1 (iii) 0 

1 (iii) 0 

(9 0 

0 
1.25 1 (!:I 0 

(iii) 0 
(i) 0 

1.1 (ii) 0 

0.2 

0.0317 
0.0314 
0.0150 
0.0523 
0.0524 
0.0300 
0.0631 
0.0632 

0.0683 
0.0679 
0.0400 

- 

0.4 

0.0615 
0.0606 
0.0200 
0.1080 
0.1082 
0.0500 
0.1372 
0.1384 

0.154 
0.1562 
0.0700 

- 

0.6 

0.0857 
0.0838 
0.0300 
0.1667 
0.1661 
0.0600 
0.2336 
0.2365 

0.285 
0.2940 
0.0800 

- 

0.8 

0.0985 
0.0951 
0.0350 
0.215 
0.2115 
0.0600 
0.352 
0.3535 

0.520 
0.5446 
0.0800 

- 

1 .o 
0.0951 
0.0904 
0.0300 
0.220 
0.2118 
0.0500 
0.418 
0.4000 

0.823 
0.7823 
0.0600 

- 

1.2 

0.0771 
0.0722 
0.0200 
0.168 
0.1569 
0.0400 
0.304 
0.2781 

0.540 
0.4807 
0.0500 

- 

1.4 

0.0538 
0.0497 
0.0200 
0.0989 
0.0899 
0.0300 
0.147 
0.1306 

0.200 
0.1732 
0.0400 

- 

(i) Present work, (ii) Gavze (1990), (iii) Yan et al. (1987) 

TABLE 6. The three-dimensional case when the sphere centre is located in the plane containing the 
hole centre (comparison of the resistance coefficients for F?, a = 4) 

(1990). Looking at table 5 ,  we find that our values for F$ agree with Gavze's to three 
digits, except for those very near the rim of the hole or near the plane wall. Poorer 
agreement is obtained for Pg with Yan et al. (1987) especially for zo/a < 2, with a 
maximum deviation of 25% at xo = 0.75 and zo/a = 1.1. Also, the results in tables 6 
and 7 for the cross-couple resistance coefficients P? and F? show good agreement 
with those given by Gavze, but can be as much as an order of magnitude higher than 
those reported in Yan et al. (1987). Hence, the latter are undoubtedly erroneous. 

The convergence and accuracy tests just summarized convincingly demonstrate 
that the method has impressive convergence and accuracy characteristics even for 
the most extreme case where the sphere is either intersecting the plane of the orifice 
or interacting with the rim of the pore. 
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%/a Xo = 0 0.2 0.4 0.6 0.8 1 .o 1.2 

0 0.00676 0.0134 0.0193 0.0230 0.0230 0.0191 
0 0.006 0.013 0.018 0.021 0.020 0.017 

l.(iii) 0 0.000 0.006 0.010 0.010 0.010 0.006 
0 0.0149 0.0317 0.0514 0.0709 0.077 0.0589 

1.5 I 0 0.015 0.031 0.049 0.065 0.068 0.050 
\(iii) 0 0.000 0.010 0.020 0.040 0.040 - 

( i )  0 0.0215 0.0488 0.0889 0.147 0.184 0.133 
1.25 I (ii) 0 0.023 0.049 0.087 0.139 0.167 0.1125 

2 I($; 

- - - - - \(iii) 0 - 

0 0.0265 0.063 0.127 0.262 0.443 0.287 
0 0.029 0.065 0.126 0.256 0.438 0.238 
0 0.005 0.015 0.040 0.080 0.120 - 

( i )  present work, (ii) Gavze (1990), (i i i)  Yan et al. (1987) 

1.4 

0.0136 
0.012 
0.004 
0.0338 
0.028 

0.0603 
0.050 

0.09 
0.076 

- 

- 

- 

TABLE 7. The three-dimensional case when the sphere centre is located in the plane containing the 
hole centre (comparison of the resistance coefficients for F?, a = 4) 

3.2. Resistance coefficients 
Twenty one independent resistance coefficients were computed for a wide range of 
a,x,andz,/a:a=&,,a,+,$, l ; x o = O , t , + , $ ,  1 , 2 , $ 2 , 1 0 ;  zo/a = E, 2, $, 2, 4, 10. In  
addition, for the sphere intersecting the pore opening, the following values for the 
coordinates of the sphere centre were chosen : x,/b(z,) = 0, a, +, 2;  zo/a = 0, a, a, 2, 1 ,  
where the curve xo = b(zo) = 1 -a( 1 -zo/a)i represents the boundary of the particle- 
free layer. The six remaining resistance coefficients can be easily evaluated by 
making use of (2.31) which is derived from the reciprocal theorem. With 8 x 8 , 9  x 9, 
10 x 10 and 11 x 11 elements, the computation time required for one run was, 
respectively, 1 : 38, 2 :30, 3:30, 5:41 minutes of CPU time on an IBM 3081. 

We shall first present results for all the coefficients for a = i. To the best of our 
knowledge those for translation 2, rotation 1,3 and shear flow 1,2 are entirely new. 
Moreover, the values of the aforementioned resistance coefficients for the case in 
which the sphere intersects the pore opening and is located off the pore centreline are 
also new. Although data for the other four motions had been published previously by 
Yan et al. (1987) and by Gavze (1990), our results are still of interest because they 
are more accurate and reliable than those of Yan et al. and more complete than 
Game’s. 

Figure 3 (a-c) shows plots of the dimensionless hydrodynamic force and torque 
coefficients -F?, -F2, -Fk and -T;i, -T?, -T? for a sphere of dimensionless 
radius a = + as a function of xo and z0/a. It is seen that these six curves are similar 
in shape, and that the influence of the orifice is largely confined to the region xo < 1.5 
and xo/a < 2.0 for this value of a. Also shown are the solutions of Brenner (1961) for 
the limiting case of an infinite plane wall. As expected, the sphere experiences a 
smaller resistance for both translation and rotation as it approaches the orifice and 
the minimum value of the corresponding coefficient lies on the centreline. In  general, 
T )  (xo,zo) < F ~ ( x o , z o )  (i = 1 ,2 ,3 ) ,  and although the values of F$ and TP are 
approximately equal to those of F$ and T;l, respectively, they are not identical, 
except at xo = 0 and as xo +a, because of the lack of symmetry between the motions 
in the x- and y-directions except for these limiting cases. We also note that the 
coefficient for translation normal to the wall, F?, increases much more rapidly with 
increasing xo than F$ and F$, since the limiting solutions in the absence of the orifice 
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1.8 

1.4 

1 .o 

- F:' 

0 0.4 0.8 1.2 1.6 2.0 0 0.4 0.8 1.2 1.6 2.0 

2.2 

1.8 

1.4 

1 .O 

- F? 

0 0.4 0.8 1.2 1.6 2.0 0 0.4 0.8 1.2 1.6 2.0 
XO XO 

12 
10 
8 

4 
2 

0 

-F:l 

I . . . I . I . I . I . ' . I . I . I . I I ,  
0.4 0.8 1.2 1.6 2.0 

0.8 

0.4 

0 
0.04 
0.03 

- T2 1.1  0.01 
i n  -.- 
0 0.4 0.8 1.2 1.6 2.0 0 

XO 

0.4 0.8 1.2 1.6 2.0 
XO 

0.2 

F: 0.1 

0 

0.12 

0.06 
- F: 

0 0.4 0.8 1.2 1.6 2.0 0 0.4 0.8 1.2 1.6 2.0 
XO XO 

FIGURE 3. Non-dimensional resistance coefficients for the components of a force or a torque exerted 
on a sphere with dimensionless radius a = 4 translating or rotating in a quiescent fluid: 0 ,  
zo/a  = 1.1;  0, zO/a = 1.25; A, zo/a = 1.5; 0,  zO/a = 2.0; V, zo/a = 4.0; ----, the solutions of 
Brenner (1961): ( a )  -F? and -F?, ( b )  -T;I and -!Q, ( c )  -F2 and -Q, ( d )  F? and -q, (e)Q 
and -F2,  (f)Fj* and --F28. 

are much larger for this coefficient. In  contrast, Tlj, is smaller than TP and T?, since 
the resistance of a sphere rotating about the z-axis is less than when it is rotating 
about the x- and y-axes. 

The cross-coupling coefficients F?, F?, FP, -FP, -FP and - T;" are presented in 
figure 3 ( d - -  for a = 4. Note that, in view of (2.31), F? = F2 and T;" = T>, and that 
q, T>, Ps and P2 are related to FP, FP, F? and F? in that order. Also, F? =!= -F? 
and FTp =I= F2,  even though when plotted us. xo for fixed z o / a  the curves for these 
coefficients are similar. It is seen that the curves for the coefficients listed above have 
two characteristics. Specifically, F?, F?, FP and - TP vanish at the orifice axis and 
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0.16 

0.08 
F: 

0 

0.16 

0.08 
T: 

0 0.4 0.8 1.2 1.6 2.0 0 0.4 0.8 1.2 1.6 2.0 
XO XO 

FIGURE 4. Non-dimensional resistance coefficients for the components of a force or a torque acting 
on a sphere with dimensionless radius a = 8 held fixed in a Sampson flow. Symbols as in figure 3. 
(a) F; and q, (b) Pi. 

1 , ..-I 
1.2 1- , 0 
1 .o 

1.8 0.06 
1.6 

F :"' 1.4 
1.2 
1 .o 

0 0.4 0.8 1.2 1.6 2.0 

0 0.4 0.8 1.2 1.6 2.0 0 0.4 0.8 1.2 1.6 2.0 
XO XO 

(C) 
\ ,  

1 .oo 
0.95 

T:h' 0.90 
0.85 
0.80 

1 .oo 
0.95 

- 7':"' 0.90 

0.85 

0 0.4 0.8 1.2 1.6 2.0 

0.80-. " " " " " " " " ' 
0 0.4 0.8 1.2 1.6 2.0 

XO 
FIGURE 5. Non-dimensional resistance coefficients for the components of a force or a torque acting 
on a sphere with dimensionless radius a = 8 rigidly held fixed in shear flow 1 and shear flow 2. 
Symbols as in figure 3. (a) F;hl and Fih2, (b) -Fihl and -qh*, ( c )  Chi and -qhi. 

also as zo+-co, and attain their maximum value in the vicinity of zo = 1.0, where Fk 
and F? are 0(1 ) ,  whereas -F!j and -T? are one order of magnitude smaller. In  
contrast, FTp and -Ffll are small but non-zero a t  xo = 0, both attain their maximum 
near zo = 1.2, and, for xo > 2, approach the finite values given in Goldman et al. 
(1967 a, b )  for the rotation of a sphere above an infinite plane wall. 

for the Sampson flow past a fixed sphere, 
which play an important role in the sphere entrance problem when q is large, are 
plotted in figure 4(a, b). As shown in figure ( b ) ,  Fi is of order unity in the vicinity of 

The resistance coefficients Fi, Fi and 
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zola 

0 
0.5 
1 .o 

zola 
0 
0.5 
1 .o 

zo/a 

0 
0.5 
1 .o 

x, /b(z , )  = 0 0.25 0.50 0.75 

- 1.763 - 1.785 - 1.860 -2.027 
-1.705 -1.726 -1.798 -1.961 
-1.575 -1.603 -1.700 -1.933 

F'33 

0 0.25 0.50 0.75 

- 1.763 -1.776 - 1.821 - 1.920 
-1.705 -1.719 -1.763 -1.863 
- 1.575 - 1.595 - 1.670 - 1.871 

T;I 
x, /b(z , )  = 0 0.25 0.50 0.75 

- 1.364 - 1.377 - 1.420 - 1.530 
-1.398 -1.415 -1.479 -1.644 
- 1.459 - 1.516 - 1.767 -2.843 

n 

0 0.25 0.50 0.75 

- 1.056 - 1.059 - 1.069 - 1.094 
- 1.051 - 1.054 - 1.066 - 1.096 
-1.039 -1.046 -1.075 -1.181 

7"ss 

xo /b(zo)  = 0 0.25 0.50 0.75 

-1.056 -1.061 -1.080 -1.134 
-1.051 - 1.056 - 1.075 - 1.130 
- 1.039 - 1.048 - 1.085 - 1.210 

F? 

0 0.25 0.50 0.75 

-1.055 -1.059 -1.075 -1.115 
- 1.046 - 1.051 - 1.065 - 1.101 
-1.031 -1.036 -1.056 -1.091 

F',l 

zo/a x, /b(z , )  = 0 0.25 0.50 0.75 0 0.25 0.50 0.75 

0 0 0 0 0 0 0 0 0 
0.5 0 0.0402 0.0927 0.184 -0.0042 -0.00485 -0.00768 -0.0175 
1 .o 0 0.0909 0.233 0.576 -0.0050 -0.00074 -0.0165 -0.0646 

F;2 F;s 

zo/a 

0 
0.5 
1 .o 

zola 
0 
0.5 
1 .o 

201. 

0 
0.5 
1 .o 

x o / b ( z o )  = 0 0.25 0.50 0.75 

0 0 0 0 
0.0042 0.00511 0.00845 0.0171 
0.0050 0.00814 0.0221 0.0781 

F3 

0 0.25 0.50 0.75 

0 -0.00630 -0.0174 -0.0461 
0 -0.00534 -0.0152 -0.0411 
0 -0.00472 -0.0167 -0.0495 

T;a 
x,/b(z,) = 0 

0 
0 
0 

0.25 0.50 

0.0354 0.0839 
0.0339 0.0814 
0.0532 0.182 

F":l 

z , /b (zo)  = 0 
0.396 
0.610 
0.846 

0.25 0.50 

0.396 0.398 
0.611 0.613 
0.847 0.851 

F p  

0.75 

0.179 
0.178 
0.321 

0.75 

0.400 
0.617 
0.853 

0 0.25 0.50 

0 0  0 
0 -0.00271 -0.00725 
0 -0.00522 -0.0164 

FihZ 

0 0.25 0.50 

0.396 0.395 0.393 
0.610 0.610 0.009 
0.846 0.84.6 0.847 

!qJ* 

0.75 

0 
-0.0185 
- 0.0454 

- 
0.75 

0.391 
0.609 
0.849 

z o / a  x,/b(z,)  = 0 0.25 0.50 0.75 0 0.25 0.50 0.75 

0 0 -0.00292 -0.00638 -0.0111 -0.523 -0.524 -0.526 -0.532 
0.5 0 -0.00564 -0.0122 -0.0202 -0.671 -0.674 -0.681 -0.695 
1 .o 0 -0.0138 -0.0286 -0.0406 -0.784 -0.791 -0.813 -0.844 

TABLE 8. Continued over 

l i  F L M  243 
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T y  

z,la 
0 
0.5 
1 .o 

z o / b ( z o )  = 0 0.25 0.50 0.75 
0.523 0.524 0.529 0.538 
0.67 1 0.674 0.683 0.699 
0.784 0.792 0.813 0.838 

F; 

z0la 

0 
0.5 
1 .o 

~~ 

z o / b ( z 0 )  = 0 0.25 0.50 0.75 

0 0 0 0 
0 0.0182 0.0363 0.0541 
0 0.0526 0.102 0.142 

Ts, 

0 0.25 0.50 0.75 
0 -0.0241 -0.0479 -0.0700 
0 -0.0224 -0.0435 -0.0608 
0 -0.0271 -0.0470 -0.0541 

F: 

0 0.25 0.50 0.75 

1.132 1.125 1.103 1.065 
1.093 1.083 1.055 1.006 
0.987 0.959 0.871 0.726 

Z,/. 

0 
0.5 
1 .o 

z,/b(z,) = 0 0.25 0.50 0.75 

0 0.0460 0.0927 0.141 
0 0.0477 0.0957 0.144 
0 0.0648 0.125 0.168 

TABLE 8. The resistance coefficients for a = 4 when z,/a < 1.1 

0 0.4 0.8 1.2 1.6 2.0 
XO XO 

FIGURE 6. Curves showing the influence of the sphere radius along z,/a = 1.1 on -FZ and Pis; 
. , a = ~ ; . , a = ~ ; ~ , a = l . ( a )  -F 2, ( b ) F  5. 

the opening, decreases with increasing xo and then approaches zero far from the hole. 
On the other hand, Fs and c,, both of which are an order of magnitude smaller than 
F:, attain their maximum in the vicinity of xo = 1.0 and vanish at  xo = 0 or as 
Xo+CO. 

The remaining coefficients Fshl, -F:hl, qhl for shear flow 1 and Fihe, - chz, - qh* 
for shear flow 2 are shown in figure 5 (a+) for a = $. It is interesting to note that the 
presence of the orifice has only a small influence on the background motion of the 
sphere for a simple shear flow past a plane wall. In fact, the existence of the pore 
entrance has a negligible effect on Fshl and Fihz, in accord with the observation that 
the streamlines for the simple shear flow past an orifice in a plane wall do not deviate 
significantly from those of the undisturbed shear flow. On the other hand, the z- 
component of the force, F:hl, which exerts some influence on the sphere trajectory in 
the vicinity of the orifice for the case of small q, attains a small value with a 
maximum of 0.08 for zo/a = 1.1. 

A summary of the values of the coefficients for a = $ when the sphere intersects the 
pore opening are given in table 8. 
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Owing to space limitations, we present in figure 6(a, b )  only the results for F> and 
F? for two other sphere radii ; a = and 1.  As one would have anticipated, the region 
of influence of the orifice edge on the coefficients depends on both zo/a and a in a 
complicated manner. One notes, however, that  the maximum value of F? is 
relatively insensitive to the sphere radius a and depends primarily on zo/a, whereas 
the width of the region of influence of the orifice edge is affected primarily by the 
sphere radius. 

The complete data and figures for all the resistance coefficients for a = &, a, i, and 
1 and can be obtained from the authors on request. 

4. Particle screening effects 
In this section we shall use the results for the twenty-seven force and torque 

coefficients described in $3.2 to study the motion of a neutrally buoyant sphere 
approaching an orifice in a combined Sampson and shear flow, and, in particular, to 
determine the particle trajectories, the particle capture tube and the particle 
screening effect. First, for a neutrally buoyant particle and for the case of zero Stokes 
number, all the forces and torques in (2.29) and (2.30) will vanish, thereby leading 
to six equations for the six unknown velocity components U, and wi .  In  fact, the set 
of three equations for U,, U3 and w2 resulting from (2.29) by settingF, = F3 = T,  = 0 
are decoupled from the corresponding equations for U,, w1 and w3 obtained from 
(2.30) by setting F2 = T, = = 0,  and hence each of the two sets can be solved 
separately. Rewriting these two sets of equations in matrix form we, therefore, have 
that 

(4.1) 

C, X, = GsinaDih2, (4.2) 

C, X, = To D: + G cos t~.D:~l, 

where 

F? F? FP 

(4.3) 

I 
The solution of (4.1) and (4.2) can be written in the dimensionless form 

Xs/G = - 3 Q 3  + cos ugh , ,  

X,/G = sinup?, 

where G is defined in (2.8) and 
Q = d(2zG) 

(4.4) 

(4.5) 

is a dimensionless suction parameter related to the fluid velocity a t  the pore centre 
from (2.10). The symbols 3,gh1 and F22 denote the vectors 

P22 = ( Q h 2 ,  aush2, auiht)T (4.7) $ = (us, VS,, awS,)T, xhl = (Ushi, Gh1, awS,hl)T, 

obtained from 
C,P,  = D:, C, xhl = D:hl, Cap? = DSh2 a ?  (4.8) 

corresponding to the Sampson flow and the two shear flows, where the superscript T 

17-2 
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0.010 

0.005 

0.12 - 

0 0.4 0.8 1.2 1.6 2.0 0 0.4 0.8 1.2 1.6 2.0 

0 0.4 0.8 1.2 1.6 2.0 
XO 

FIGURE 7 .  The difference in velocity of the undisturbed fluid at the sphere centre and that of the 
neutrally buoyant sphere with a = for Sampson flow and shear flows 1 and 2. Symbols as in 
figure 3. ( a )  All;, ( b )  A?& ( c )  AQhl ,  ( d )  AQhl, (e)  AQhz. 

denotes the transpose of the row matrix. On setting G = 1, without loss of generality, 
we therefore obtain from (4.4) and (4.5) 

U ,  = -3QQ+cosaQh1, U, = -3&Q+cosaQh1, U, = sinaUS,"z. (4.9) 

It is clear then that, for G = 1, the particle velocity components Ui can be 
determined, for any Q and azimuthal angle a, from (4.9), once us, Q, qhl, Qhl and 
Qhp have been evaluated. 

The numerical procedure for determining the particle trajectory equations was 
formulated as follows : 

(i) As described previously, the twenty-seven resistance coefficients are calculated 
at 74 nodal points in the flow field. A t  each node, (4.8) is then solved to determine 
q, @, qhl, Ujhl and Q h 2 .  

(ii) The coordinates of the sphere centre are now recast in the new Cartesian 
system (z,y,z) using (2.1), (2.2) and (2.3). 
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” 
-3.0 -2.0 -1.0 0 1 .o 

-2.5 -1.5 -0.5 0.5 1.5 
X’ 

FIGURE 8. Particle trajectories lying within the particle capture tube in the y’ = 0 plane for a = 
and Q = 2. Dashed line: limiting streamline of the corresponding fluid capture tube. 

(iii) Using spline interpolation in two dimensions, values for q, e, qhl, ehl and 
Q h z  are obtained at  any point in the (x, 2)-plane using the nodal solutions in step (i). 
Also the particle velocity is required to vanish as it touches the plane wall or the rim 
of the hole. 

(iv) U, is now calculated for any Q and a using (4.9). 
(v) The transformation formulae 

U,, = U, cos a - U, sin a, U,, = U, sin a + U, cos a (4.10) 

(vi) Finally, the trajectories of the sphere are computed by numerically integrating 
are used next to find U,,, U,, and U,, at (x’, y’, 2’). 

the ordinary differential equations 

dx’ - U,, dy’ U dz’ - U,, -=2 
ds’ U ’ ds‘ U ’ ds’ U ’ 

(4.11) 

where (d, y’, z’) refers to the sphere centre and U = I u. 
Before describing how the shape of the particle capture tube was determined, we 

first present the results for the difference in the velocity of the undisturbed fluid at  the 
sphere centre and that of the neutrally buoyant sphere for a = $, by showing in figure 
7 (a-e) the differences A@, A& A q h l ,  AQhl and AQhp at various locations xo and zo. 
It is seen from these figures that all the particle velocities are always smaller than or 
equal to the corresponding fluid velocities except for ehl, where AQhl  changes in sign 
as the rim is approached. The slip between the fluid and particle associated with 
A q h l  makes an important contribution to the concentration defect described later. 

Of special interest are the dividing particle trajectories which separate the 
particles entering the pore from those continuing downstream in the main tube. The 
surface formed by all these trajectories enclose a volume, which defines the particle 
capture tube. 

Before considering this particle capture tube, let us first examine the particle 
trajectories in the y’ = 0 plane. A representative solution for a = 4 and Q = 2 is 
shown in figure 8 where the curves ABC and DEF depict the steric exclusion 
boundary for the sphere centre. One observes that there is a finite range of upstream 
particle trajectories that converge on the boundary ABC, and which represent 
trajectories of spheres that almost touch the wall and then essentially roll into the 
hole. This behaviour was observed for pure Sampson flow in Dagan et al. (1983). On 
the downstream side, two limiting curves are shown, one solid and one dashed, of 
which the latter is the dividing streamline of the fluid phase. Note that it impacts the 
wall at  point G on the rim (x = 1). This is to be expected from the fact that the shear 
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FIGURE 9. The critical curves for different values of Q when a = 4. 
9 (deg.1 

stress of the pure Sampson flow vanishes everywhere along the solid plate and that 
the corresponding shear stress of the pure shear flow is positive. Lying inside this 
dividing streamline in the plane of symmetry is the upstream limiting particle 
trajectory, which intersects the downstream exclusion boundary DEF at  point E. 
The location of point E changes with Q ,  a ,  and, as we shall describe shortly, the angle 
q4 measured from the pore centre, where $ = 0 is the symmetry plane. 

To determine point E we examine the tangential component V ,  of the particle 
velocity at a negligible distance E' from the exclusion curve DEF measured along the 
radius from the downstream rim. The criterion for particle capture is given by the 
condition 

V,  < 0 :  

V ,  > 0 :  

the particle will roll into the hole, 1 
the particle will be carried downstream, 1 (4.12) 

and, thus, the downstream separation trajectory is defined by the condition V ,  = 0. 
Numerical experiments have shown that the results are insensitive to the value of 

e' in that almost the same results are obtained whether E' is set equal to 5 x or 
lo-'. As expected, numerical calculations show that all trajectories originating off 
the plane of symmetry which impact the rim in the range in < q5 < 71: will enter the 
pore. In  contrast, for spheres impacting the rim in the range 0 < # < 471: there is a 
critical curve defined by V,  = 0 which varies with Q and a and lies on the surface 
generated by rotating the arc DEF in figure 8 about the z-axis. The special case a = 4 
is shown in figure 9. It is seen that, for Q > 2 ,  the point E in figure 8 approaches the 
point F and that the critical curve finally coincides with the horizontal line z / a  = 1. 
I n  fact, for large values of the suction parameter Q ,  the sphere first comes close to 
the wall downstream of the rim and then rolls backwards into the hole. On the other 
hand, when the suction is weak, the sphere will also roll backwards into the hole, if 
i t  is captured, but the critical curve lies upstream of p = 1.  I n  addition, spheres, 
impacting the rim above the critical curve will roll out along the rim. Thus, for each 
value of a,  there is a minimum value of Q which must be exceeded if any particles are 
to  enter the hole. Note that,  for a = t, Qmin = 0.04, which is slightly larger than the 
value Qmin = 0.0305 found in Yan et al. (1991~)  from the pure skimming solution. 

The upstream particle capture tube is determined by integrating equation (4.11) 
backwards starting from a point along the critical curve for V ,  = 0 in the region 
0 < $ < in, and from a point along the half-circle p = 1,  z' /a = 1 in the region 
in < # < R. The surface formed by all dividing trajectories generates both the 
particle capture tube and the upstream capture tube cross-section. This numerical 
integration has been performed for two particle sizes (a = + and 2) and for a range of 
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0.25 t 
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0 0.25 0.50 0.75 1.00 1.25 1.50 
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FIGURE 10. Comparison between the far-upstream cross-section shapes of the particle capture tube 
(bold lines) and those of the fluid capture tube (thin lines). Numbers on upstream particle cross- 
section for a = $ correspond to the upstream origin of the particle trajectories shown in figure 11. 
(a )  Q = 2, a =i, a =;; ( b )  Q = 0 . 11 , a = I  2 '  

1.3 

1 .o 

-1 .5 '  ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 
-3.0 -2.0 -1.0 0 1 .o 

X' 

FIGURE 11.The projection of the particle tube surface on the (d, y')-plane for a = 4 and Q = 2 
(also see caption of figure 10). 

suction flow rates 0.04 < Q < 5. Representative upstream capture tube cross- 
sections for a = + and $ and Q = 0.11 and 2 are plotted in figure 10 (a ,  b ) .  Also shown 
for comparison are the corresponding upstream cross-sectional shapes of the fluid 
capture tubes, where the particle exclusion layers, the horizontal dashed lines in 
these figures, account for the fluid skimming effect. It is evident that the particle and 
fluid capture tubes have quite different cross-sectional shapes and, that, at any point 
given location, the particle capture tube always lies within the fluid capture tube. In  
addition, the sphere and the fluid have different velocities due to the hydrodynamic 
interaction of the sphere with the wall and with the orifice entrance geometry, which 
causes the particle to move slower than the surrounding fluid, as shown previously 
in figure 7. These combined mechanisms are responsible for the particle screening 
effect. A plan view of the particle trajectories in the (z',y')-plane originating at 
different locations along the upstream particle capture tube cross-section, which are 
numbered in sequence for the Q = 2 solution in figure lO(a), are shown in figure 11. 

We next consider the concentration defect at the exit of the pore on the basis of 
the results given above, taking into consideration both the fluid skimming and 
particle screening effects. We suppose that the particle concentration a t  upstream 
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Q 
FIGURE 12. The effect of the particle screening and the fluid skimming on the concentration defect 
at  the pore exit (0, due to both the particle screening and the fluid skimming effects; 0,  due to 
the fluid skimming effect alone: the solid symbols, a = g, the open symbols, a = a. 
infinity has the uniform value C-,. Then, if C-, << 1, the flux of pure fluid into the 
orifice is 2nQG, while the corresponding particle flux is 27cC-, GQ,, where 

2@, = J" Uz, dy' dz', (4.13) 

in which U,, is obtained from (4.10) and the integration domain extends over the 
entire far upstream cross-sectional area of the particle capture tube. Mass 
conservation for the particle phase requires, however, that the particle flux also equal 
27cCeQG, where C, is the particle discharge concentration a t  the pore exit. Thus we 
obtain 

(4.14) 

Our results for the concentration defect for this limit are plotted in figure 12, where 
the lines with the circle symbols correspond to  (4.14) with both the particle screening 
and fluid skimming effects taken into account, while the lines with box symbols are 
taken from Yan et al. (1991a) and represent only the fluid skimming effect. It is seen 
that the concentration defect is enhanced by particle screening and that the pure 
skimming solution provides an  upper bound for Ce/C- ,  . 

It would be expected that the relative importance of the particle screening effect 
would increase rapidly as the radius of the particle increases and approaches that of 
the pore. For these cases, however, the frequent choking of the pore mouth by 
particles will alter the background fluid flow field significantly and, thus, the 
hydrodynamic interaction between different particles can no longer be neglected. 
Unfortunately, our present model is too simplified to  be able to describe such cases 
with any degree of reliability. It should also be noted in passing that our analysis has 
taken Q, which is related to  the flux of the background Sampson flow, as fixed, which 
is equivalent to fixing the pressure drop across the orifice, whereas the actual flow of 
fluid through the orifice will decrease as the particle approaches the pore due to  the 
blockage of the opening. This decrease in the flow for a fixed pressure drop is the 
situation usually encountered in practice. 

5. Concluding remarks 
I n  the present paper, the boundary-integral method has been applied to obtain the 

first solutions for the hydrodynamic interaction of a sphere in a simple shear flow 
with suction past an infinite wall with a circular side hole. This fully three- 
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dimensional flow geometry was treated using the Green function developed by 
Miyazaki & Hasimoto (1984) and further extended in the present analysis. The 
general approach is applicable for any undisturbed velocity field which does not 
contain singularities internal to the sphere surface, and includes the two shear flows 
and the Sampson flow considered in this paper. The numerical results indicate that 
excellent convergence and high accuracy can be achieved using this procedure with 
acceptable computational time. Although the integral equation which is solved is of 
the first kind and is well known to be ill conditioned, the numerical calculations 
indicate that, as previously demonstrated by Youngren & Acrivos (1975) for 
unbounded flows, no difficulties are encountered with respect to convergence and 
stability for this more complicated bounded flow. The proposed method appears to 
be the most reliable and accurate of the various numerical schemes that have been 
proposed thus far for treating particle entrance problems. The basic approach can 
also be extended to include rigid particles of arbitrary shape and deformable fluid 
droplets. Solutions can also be obtained for the more difficult cases where the sphere 
can impact the rim of the hole or intersect the plane of the hole. These solutions are 
crucial in defining the upstream particle capture tube. 

In concluding this paper, we wish to make a few comments concerning the blood 
flow problem that provided the motivation for this study. In Yan et al. (1991 b ) ,  an 
approximate procedure is presented for extending the theory for fluid skimming to 
an upstream Poiseuille flow in a parent vessel with a small circular side branch in the 
low-Q limit. It is shown that, for flows typical of microvascular bifurcations in vivo, 
Q varies from being negligible to 0.2 with a mean value of 0.1. The present numerical 
solutions show that the discharge hematocrits predicted in Yan et al. (1991 a )  provide 
an upper bound and that, if particle screening were included, C,  could be signifi- 
cantly lower. Further, it is clear from figure 12, that particle screening increases the 
minimum value of Q which must be exceeded if any cells are to enter the side branch. 
Examination of figure 12 reveals furthermore that the maximum deviation between 
the exit concentration predicted by the pure fluid skimming analysis and the present 
theory for both the particle screening and the fluid skimming for a dilute suspension 
occurs roughly at  Q = 0.5 for the two values of a shown. For Q = 0.1 and a = 4 the 
deviation in the predicted exit concentration is about 30% and then increases as a 
increases, while, for a = t the minimum value of Q for cells to enter the side branch 
would exceed Q = 0.1. The close fitting limit where cells could still enter the side 
branch would thus appear to lie outside the range of Q encountered in the 
microcirculation in vivo, but in other non-biological applications, such as cross-flow 
filters, the close fitting limit could be of special interest since it is clear from the 
results in figure 12 that the difference between the pure skimming and both the 
particle screening and the fluid skimming results could increase very substantially for 
Q of O(1).  We also mention that typical hematocrits in the blood circulation are of 
the order of 40 % and thus are far greater than the dilute limit considered herein. For 
this high concentration there is a cell-free layer near the wall, but in the core of the 
flow the two phases will have a much smaller slip velocity than predicted by figure 
7 ( c ) .  On this basis, one would anticipate, therefore, that the discharge hematocrit 
HD would lie somewhere between the results for pure fluid skimming and the dilute 
theory for both the particle screening and the fluid skimming predicted herein. On 
the other hand, since the increase in the hematocrit concentration near the entrance 
to the orifice would be expected to lead to a further reduction in HD, it is not clear 
at  this stage of the analysis how these two opposing effects, when combined, would 
affect the hematocrit defect in a typical biological system. Finally, while red cells 
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are highly deformable biconcave disks, the much more infrequent white cells are 
very nearly spherical and are present in concentrations that are within the range of 
the dilute theory in which the background undisturbed flow can be approximated by 
a Poiseuille tube flow. The extension of the present theory to this case is currently 
being explored. 

Since the three-dimensional hydrodynamic resistance coefficients for a finite 
sphere immersed in a shear flow with suction past an infinite wall containing a hole 
are a fundamental input for all problems involving particle entrance phenomena, it 
is anticipated that the method and the results presented in this paper will be useful 
in many applications other than the blood flow problem that was the motivation for 
this study. 

This research was supported by the National Science Foundation under grant 
CTS-8803116 and by the State of New York under its Einstein Chair Program. 

Appendix 
When 8 = 8, and q5 = q5,, the following integral becomes singular: 

I =  JJSP@(XjY)dSy. (A 1) 

where 8, and 4, are the corresponding values of 8 and q5 a t  the centre of the element. 
To evaluate the above integral, the region of integration is divided into five 
subregions : 

where el, 8, and q5', q5, are the corresponding values at  four sides of the element, and 

€8 = €/a ,  e+ = e/(asinO,). (A 3) 
The first four integrals on the right-hand side of (A2) are regular and can be 

evaluated by means of an 8 x 8 composite Gaussian quadrature formula, while the 
last one is singular. Following the approach by Youngren & Acrivos (1975), we treat 
the small region around the singularity as a flat plane and use the formula presented 
in Appendix B of their paper to calculate the last integral analytically. 

Rewriting @' in the following form : 

8xp@ = Sit; + S::; + Sf;, (A 4) 
where sy; = 03(@*), sj;; = q*, 

S!? 8 . 3  = Oj(L) - y*WL 

x.-y. a 2 
-3- 1 + - sin-' 

2R* ax:( x ( cosh(&) 
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we obtain after tedious manipulations 

- 4 2 + 1  - - 
where K ,  = 21n- K,=-l@, o c  K 

4 2 - 1 ’  

Xk X m Y m  Z m x m  1 0 0  

a2 zmxm Y m Z m  z; 0 0 1  

and (Xm,  Y,, 2,) are the Cartesian coordinates of the point m relative to the origin 
at  the centre of the sphere (cf. figure 2). 

As discussed at the end of $2, there is an optimum value of E which provides the 
best agreement with the known values of the coefficients when the sphere is far from 
the hole. Optimum values of E for the strong-interaction cases considered are 

10x10 11x11 12x12 
zo/a = 1.10 0.05353 0.058 823 0.06388 
zo/a = 1.25 0.05552 0.061093 
zo/a = 1.50 0.05745 0.063376 

For other cases we have used 6 = 0.1. 
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